US009081959B2

a2 United States Patent

(10) Patent No.: US 9,081,959 B2

Ghosh et al. (45) Date of Patent: Jul. 14, 2015
(54) METHODS AND APPARATUS FOR CONTROL (56) References Cited
AND DETECTION OF MALICIOUS
CONTENT USING A SANDBOX U.S. PATENT DOCUMENTS
ENVIRONMENT 6,211,871 Bl 4/2001 Himmel et al.
(71) Applicant: Invincea, Inc., Fairfax, VA (US) ?jg%jéiﬁ) gé légggg iingl;lztnaét al.
7,536,598 B2 5/2009 Largman et al.
(72) Inventors: Anup Ghosh, Centreville, VA (US); 7,552,479 Bl 6/2009 Conover et al.
Scott Cosby, Alexandria, VA (US); Alan (Continued)
Keister, Oakton, VA (US); Benjamin
Bryant, Alexandria, VA (US); Stephen OTHER PUBLICATIONS
Taylor, Washington, DC (US)
Morales et al., “Building malware infection trees”, Malicious and
(73) Assignee: Invincea, Inc., Fairfax, VA (US) unwanted Software (Malware), Oct. 2011, 6th International Confer-
ence on (pp. 50-57) . IEEE, 2011.*
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
Primary Examiner — Justin T Darrow
(21) Appl. No.: 13/690,452 Assistant Examiner — Hee Song
(22) Filed: Nov. 30. 2012 (74) Attorney, Agent, or Firm — Cooley LLP
: . 30,
(65) Prior Publication Data (57) ABSTRACT
US 2013/0145463 Al Jun. 6, 2013 A non-transitory processor-readable medium storing code
representing instructions to cause a processor to perform a
Related U.S. Application Data process includes code to cause the processor to receive a set of
(60) Provisional application No. 61/566,162, filed on Dec. indications of allowed behavior associated with an applica-
5 2011. T tion. The processor is also caused to initiate an instance of the
’ application within a sandbox environment. The processor is
(51) Int.CL further caused to receive, from a monitor module associated
GO6F 21/00 (2013.01) with the sandbox environment, a set of indications of actual
GO6F 21/56 (2013.01) behavior of the instance of the application in response to
GO6F 21/53 (2013.01) initiating the instance of the application within the sandbox
(52) US.CL e.nVironme.nt. The processor is also caused to s.end an indica-
CPC . GOGF 21/56 (2013.01); GOGF 21/53 tion associated with an anomalous behavior if at least one
(2013.01); GO6F 21 /5,66 (2013.01) indication from the set of indications of actual behgviqr does
(58) Field of Classification Search not correspond to an indication from the set of indications of

CPC ... GOG6F 21/53; GOG6F 21/56; GOG6F 21/566
USPC oo 726/14,22-25;717/124-135
See application file for complete search history.

allowed behavior.

25 Claims, 7 Drawing Sheets

SANDBOXED PROTECTION SYSTEM
121a

INPUT

SIGNAL APPLICATION SANDBOX MONITOR
I'«“«~139:?> CONTROL MODULE [¢¥ MODULE

T #

EVENT ENGINE GUEST MONITOR
MODULE MODULE
RULE
KERNEL MCDE
MODULE 1312 GENERATION
— MODULE 1338

TRUST
CLASSIFICATION
MODULE
1378

DATA STORE
1358

RULES DATABASE ‘
1362

IM&I&%& 103a

UE
OUTPUT 101
SIGNAL

HOST OPERATING SYSTEM

SANDBOX
ENVIRONMENT
185

APPLICATION HELPER
MODULE
078

DATA STORE
109

US 9,081,959 B2

Page 2
(56) References Cited 2010/0138639 Al 6/2010 Shah etal.
2010/0223613 Al 9/2010 Schneider
U.S. PATENT DOCUMENTS 2011/0047620 Al 2/2011 Mahaffey et al.
2011/0083180 Al* 4/2011 Mashevsky etal. 726/23

7,584,503 Bl 9/2009 Palmer et al. 2011/0099620 Al 4/2011 Stavrou et al.

7,693,991 B2 4/2010 Greenlee et al. 2011/0167492 Al 7/2011 Ghosh et al.

7,840,801 B2 11/2010 Berger et al. 2012/0297457 Al 11/2012 Schulte et al.

7,899,867 Bl 3/2011 Sherstinsky et al.

7.979.889 B2 7/2011 Cladtonent ot OTHER PUBLICATIONS

8,001,606 B1* 8/2011 Spertuscccovvennne. 726/25

8,078,740 B2 12/2011 Franco et al. International Search Report and Written Opinion mailed Mar. 12,

8,290,763 B1 10/2012 Zhang 2013 for International Application No. PCT/US2012/067311.

8,370,931 B1* 2/2013 Chienetal. ...c.ccccoonne. 726/22 Office Action for U.S. Appl. No. 12/558,841, mailed Apr. 3, 2012.

8401,082 B1* 3/2013 Satish etal. . ~ 706/20 Office Action for U.S. Appl. No. 12/558,841, mailed Jan. 30, 2013.

Sacs.o00 Bl 2013 Kaskeletal .. © 72622 Office Action for U.S. Appl. No. 12/037.412, mailed Aug. 16, 2013.

8:572:735 B2 10/2013 Ghosh et al. Final Office Action for U.S. Appl. No. 12/037,412, mailed Apr. 23,
2004/0008652 Al 1/2004 Tanzella et al. 2012.
2004/0025158 Al 2/2004 Traut Office Action for U.S. Appl. No. 12/037,412, mailed Oct. 27, 2011.
2004/0064735 Al 4/2004 Frazier et al. Office Action for U.S. Appl. No. 12/827,203, mailed Jan. 15, 2013.
2004/0093372 Al 5/2004 Chen et al. Adabala et al, From virtualized resources to vritual computing grids:
%882;8 (1)2(1) (l)gg ﬁ} Zgggg g;fcei?;ﬁeeftafl' the I.n-VIGO system. [online] (Nov. 11, 2003)., Elsevier, pp. 1-14.
5006/0136720 Al 6/2006 Armstrong et al. Retrieved from the Internet: <http://users.cis.fiu.edu/-zhaom/re-
2006/0168156 Al 7/2006 Bae etal. search/fges.pdf>.
2006/0271661 Al 11/2006 Qi et al. Huang, Y. et al., Efficiently tracking application interactions using
2006/0294519 Al 12/2006 Hattori et al. lightweight virtualization, ACM, Oct. 31, 2008, 9 pages.
2007/0044151 Al 2/2007 Whitmore Peterson et al., “A Flexible Containment Mechanism for Executing
2007/0079307 Al 4/2007 Dhawan ct al. Untrusted Code,” [online] (2002). University of California, pp. 207-
2007/0107058 Al 5/2007 Schuba et al. 225. Retrieved from the Internet: <http://mse.uk.distfiles.macports.
2007/0192866 Al 8/2007 Sagoo et al. . . .
2007/0240212 A1* 10/2007 Matalytski woooooooovcrcrcren. 726/22 org/ s1te.s/ftp.W1retapped.net/pub/ secur.lty/develo.pment/ secure-pro-
2007/0271610 Al 11/2007 Grobman gramming/peterson-et-al-2002-a-flexible-containment-mechanism-
2007/0289019 Al 12/2007 Lowrey for-executing-untrusted>.
2008/0016339 Al 1/2008 Shukla Sapuntzakis, C. et al., “Virtual Appliances for Deploying and Main-
2008/0059556 Al 3/2008 Greenspan et al. taining Software,” [online] (2003), ACM, Retrieved from the Internet
2008/0082976 Al 4/2008 Steinwagner et al. <URL: http://dl.acm.org/citation.cfm?id=1051965>, 15 pages.
%88 g;géj}égg ﬁ} 18;3882 gﬁizﬁ;ﬁ% of al. Ugurlu, “Stealth Sandbox Analysis of Malware,” PhD Thesis, Bilkent
2009/0044265 Al 2/2009 Ghosh et al. Office Action for U.S. Appl. No. 12/558,841, mailed Jan. 9, 2014.
2009/0125902 Al 5/2009 Ghosh et al. Office Action for U.S. Appl. No. 12/558,841, mailed Sep. 30, 2014.
2009/0158432 Al 6/2009 Zheng et al. Office Action for U.S. Appl. No. 12/827,203, mailed Apr. 17, 2014.
2009/0300739 Al 12/2009 Nice et al. Royal et al., “PolyUnpack: Automating the Hidden-Code Extraction
%8?8;83%5222 ﬁ} 1%%8(1)8 %/Ialrtiarx)tr:lé {al of Unpack-Executing Malware”. Computer Secur_ity Application
5010/0064039 A9 3/2010 Ginter of al. ’ Con_ference, 2006. ACSAC ’(_)6. 22nd Annua_l [online], Dec. 2006
2010/0115621 Al 5/2010 Staniford et al. [retrieved Apr. 4, 2014], Retrieved from the internet:<URL: http://
2010/0122342 Al 5/2010 Fl-Moussa et al. ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4041175>.
2010/0122343 Al 5/2010 Ghosh et al.
2010/0125903 Al 5/2010 Devarajan et al. * cited by examiner

US 9,081,959 B2

Sheet 1 of 7

Jul. 14, 2015

U.S. Patent

B601F

J40LS Y1vd

B0l
3TNAOKW
d3d73H NOILYOIddV

501
INFNNOUIANT
XOgaNys

BE0)
W3LSAS ONILVH340O LSOH

g
4N

TVYNOIS
1ndino

\\||||I|'lj
Gy —
3svavLva STINY BIET
— - 37NAON
sel NOLLYOIHISSYTO
IHOLS VIV)
\\III] T
BEET 3TNCON —
NOILYNaNI® elel 3INdON
iy 300 13NY3N
y'y F N
€62} €/C)
IINAON TINAOW
YOLINOW 1S3ND ANIONT INIAZ
b E
€Cz) €7}
JINAOW «» TINAOW TOHLNOD
HOLINOIW XOSANYS NOILYDTddY
TYNOIS
1NdNI
¥R
W3LSAS NOILDILOYd QIXOHANYS
VT 'Old

US 9,081,959 B2

Sheet 2 of 7

Jul. 14, 2015

U.S. Patent

Tz} oHUOLYIS NS

BRIOPY [B2E0g

4.2l /

sSubum jueag

gez) Sinpen
sodunrcy

4501 %oapueg

£el M

8GF spimag BOORY 19SM
wasAg Bupsssdo
« T ——
. , JBmEn]
ggl 1L susroog |l
. suEng didye I 1
g —_ |
— qzor! |
” Ol FesmoIg "
Xogqpueg ADNUOP] I | !
oT XOGPess 0 suonesyddse |1
\ | B ie :
qgel t =

geo) weisAs BunededQ 1soH

TOT40SSRO0 o

Lan

a1 ‘9l

US 9,081,959 B2

Sheet 3 of 7

Jul. 14, 2015

U.S. Patent

UlZZ 931nao
SS9V BTZ¢ 31NAOW
XOdaNVvs 88300V
—— XOdaNyS
uLoz
an Bl0z
., 3N

[0
60¢ MHOMLIN
(S)43aINOYd NOILYOI1ddY NOILYDINNWNOD

uz0z BL0C
INJWNOMIANT | " | INJWNOMIANT
XO8aNYS XOSaNYS

112 (S)¥IAY3S NOILLNDAX3

6l

€0z
NHLSAS

NOILO3LOYd

J3X08aNYsS

N
0 zo

US 9,081,959 B2

Sheet 4 of 7

Jul. 14, 2015

U.S. Patent

S31NY A3SIAZY
IHL NO G3SvE INFWNOHIANT XOHONYS FHL 1HVISRI [€lE
3341 NOLLYYIVAT IHL NO (F8vE S31NY JdHL 3S8IAZY R
3341 NOLLVAYIVAZ NV OL NOLLOZANI 3HL day RO
INIFNNOHIANT XO]ANYS FHL NI SNOILO3SN! L3313C S~ 08
S371NY IHL NO d3svd
ININNOHIANT XOEANYS IHL NIHLIM S3SSF00Ud HOLINOW [~ 508
INJANOYHIANS
XO4ANVYS FHL NI §38S300dd 04 S31Nd 3INI430 [~ c0¢
Iy
INIANOHIANT XOGANVS V JLVILINI ~_
10€

€O

US 9,081,959 B2

Sheet S of 7

Jul. 14, 2015

U.S. Patent

S3A

HOIAVHIE SNOTYINONY NV HLIM
Q31vIO0SSY NOILVOIAN! NV ON3S

¢JOIAVHIE
d3aMOTIV OL SANOJSHH-0OD
HOIAVHIE VNLIY

\

60¥

L0¥

ININNOHIANT XOHANYS
IHL NIHLIM NOLLYOMddV 3HL 40 JONVLSNI
JHL ONLIVILINI OL 3SNOJSTY NI NOLLYOITddV
dHL 40 JONVLSNI 3HL 40 ¥OIAVHE
TYNLOV 40 SNOILYOIANI 40 L3SV JAIFO3d

[~ Sob

3

INIFNNOHIANT XOGANYS ¥ NIHLIM
NOLLYOMddY AHL 40 JONVLSNI NV JLVILINI

[€0p

A

NOILYOIddY NV HLIM Q31VI00SSY HOIAYHAE
Q3MOTIV 40 SNOILVOIAN! 40 135V JAIZ03Y

[10y

US 9,081,959 B2

Sheet 6 of 7

Jul. 14, 2015

U.S. Patent

NOILVYOITddY LS¥id IH.L ¥O4 YOIAVHIE
SNOTIVINONY SY HOIAVYHAE 3HL 40 ONIAISSYT1O J1VOIANI OL TYNQIS ¥V ONJS

™ 605

t

NOILYOddY ANODJES
3HL 04 138 MOIAVHIE ANITISYE V NO (3SVE NOILYIIddY ONOJ3S
THL 204 HOIAYHAE SNOTYWONY N SV dOIAVHIEE 3HL AJISSYIO LON

)

NOLLVONddY
18¥14 3H1 ¥O4 135S HOIAYHIE INITASYE YV NO d3SvE NOILYDI 1ddV
1531 FHL HOd HOIAYHIE SNOTYAONY NV SY MOIAVHIE ZHL AJISSVTO

A

NOLLYOINddY ANCOES
IHL 40 JONVLISNI FHL 40 HOIAYHAE WNLOV 40 SNOLLYOIONI 40 138
IHL ANY NOILYIINddY LSYld 3HL 4O JONVLSN! 2HL 40 HOIAYHZE TvNLOV
40 SNOILYOIANI 40 L3S IHL H10E NIHLIM ONIZg JOIAVHIE ¥ 40 NOLLYOIANI
NY ‘NOLYOITddY ONOOIS FHL 40 3ONYLSNI 3HL 40 HOIAVHIE WWNLOY
40 SNOILYOIAN] 40 138 ONOD3S Y ANV NOILYIINddY LSHld ZHL 40 JONVISNI
FH1 40 YOIAVHIE TWNLOV 40 SNOILYJIONE 40 135 1SY1d V INF03

i

LINIFNNOHIANT XOGANYS V NIHLIM NOILYOddY ONOOIS
Y 40 3ONVLSNI NV ONV NOILYOIddY LSHId V 40 FONYLSNI NY 2LVILINI

™~ 108

US 9,081,959 B2

Sheet 7 of 7

Jul. 14, 2015

U.S. Patent

NOILYDIddY 1Sul4 3HL HLIM Q3LVIO08SY HOIAVYHIE
GaMOTTV 40 SNOILYDIANI 4O L3S IHL WOH4 NOLLYOIAONI
NY OL ONOdS3H00 LON S304 NOILYO1ddY ONOJIS FHL
40 FONVLSNI FHL 40 HOIAVYHIE TVNLOV 40 SNOLLYOIGNI
40 138 3HL W04 NOLLYOIAN] INO LSV 1Y 41 4CIAVHIE
SNOTYIWONY NV HLIM Q3LVID0SSY NOLLYDIANI NV ON3S

™~ 09

i

NOILYOITddY ONODES 3HL 4O JONVLSNI FHL
ONILLYILINI NOLLYOITddY LSHId ZHL 40 3ONVLSNI JHL OL
ISNOJSTY NI NOILYOIddY ANOO3S 3HL 40 JONVLSNI 3HL
40 ¥OIAYHZE TWN.LOV 40 SNOILLYJIANI 40 L3S ¥V IAIR03Y

)

i

INIWNOYIANT XOGAaNYS FHL NIHLIM NOILYOIddY
UNCO3S Y 40 AONVISNI NV SHLVILING NOILYOTddV LSyl
JHL 40 3ONVLSNI FHL L¥HL HONS INIWNOHIAND XOEONYS
v NIHLIM NOILYOINddY LS¥I4 IHL 40 JONVLSNI NV 31YILINI

™\~ 09

i

NOILYOITddY 18414 YV HLIM Q3.LVID0SSY
HOIAYHIE QIMOTTY 40 SNOILYOIANI 20 138 ¥ 3AIZ03Y

™\~ 109

US 9,081,959 B2

1
METHODS AND APPARATUS FOR CONTROL
AND DETECTION OF MALICIOUS
CONTENT USING A SANDBOX
ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority to and the benefit of U.S.
Provisional Patent Application No. 61/566,162, filed Dec. 2,
2011 and entitled “Methods and Apparatus for Control and
Detection of Malicious Content Using a Sandbox,” the dis-
closure of which is incorporated herein by reference in its
entirety.

BACKGROUND

Some embodiments described herein relate generally to a
sandboxed protection system that protects a computing
device from malicious content.

Information and application providers are continually
challenged to deliver value and convenience to consumers by,
for example, providing compelling information protection
mechanisms. As the amount of the digitally available infor-
mation increases, the amount of viruses and other malicious
information or software (malware) that can harm computing
devices and endanger information safety and security is also
on the rise. Some known anti-virus software is used to pre-
vent, detect and remove various types of malware. Some
known anti-virus clients, however, for example, use signa-
ture-based detection methods, in which a computer is scanned
for traces of known threats. Signatures can be developed
based on examining known malware. Thus, threats previously
unknown to anti-virus clients can go unnoticed and/or unde-
tected.

Thus, it would be desirable to provide an alternative pro-
tection system, such as a sandbox that instead of using a
signature-based detection paradigms, can detect malicious
software based on, for example, software behavior.

SUMMARY

In some embodiments, a non-transitory processor-readable
medium storing code represents instructions to cause a pro-
cessor to receive a set of indications of allowed behavior
associated with an application. The processor is also caused
to initiate an instance of the application within a sandbox
environment. The processor is further caused to receive, from
a monitor module associated with the sandbox environment,
a set of indications of actual behavior of the instance of the
application in response to initiating the instance of the appli-
cation within the sandbox environment. The processor is also
caused to send an indication associated with an anomalous
behavior if at least one indication from the set of indications
of actual behavior does not correspond to an indication from
the set of indications of allowed behavior.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic illustration of a sandboxed protec-
tion system, according to an embodiment.

FIG. 1B is a schematic illustrations of a sandbox environ-
ment within a user device, according to an embodiment.

FIG. 2 is a schematic block diagram of a computer network
system to control and detect malicious content, according to
an embodiment.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 3 is a flowchart of a process for implementing a
sandboxed protection system, according to an embodiment.

FIG. 4 is a flowchart of a process for control and detection
of malicious behavior of an application based on allowed
behavior, according to an embodiment.

FIG. 5 is a flowchart of a process for control and detection
of' malicious behavior of an application based on application
type, according to an embodiment.

FIG. 6 is a flowchart of a process for control and detection
of malicious behavior of an application based on another
application, according to an embodiment.

DETAILED DESCRIPTION

Known anti-virus software is used to prevent, detect and
remove various types of malware from computer devices.
Some known anti-virus clients, however, use signature-based
detection methods, in which a computer is scanned for traces
of known threats. Signatures can be developed based on
examining known malware. Thus, threats previously
unknown to anti-virus clients can go unnoticed and/or unde-
tected.

A sandbox can be used to separate and/or isolate running
programs from each other. A sandbox can provide a con-
trolled set of resources for use by suspicious programs. In
some embodiments, a sandboxed protection system can
detect malware in a way that overcomes shortcomings of the
traditional anti-virus clients and network gateway products.
In some embodiments, for example, the sandboxed protection
system can use behavioral-based malware detection.

In some embodiments, behavior-based malware detection
includes recognizing behaviors that software applications are
allowed to perform. Behaviors not recognized can be consid-
ered suspect. For a typical user’s computer, this can be an
extraordinarily complex problem because the configuration is
a dynamic operation. For example, over time, many applica-
tions can be installed and run on the computer. Many of these
applications can access unsafe content on a network such as,
for example, the Internet. In some embodiments, the sand-
boxed protection system can be designed to monitor pro-
cesses and/or applications such as web browsers, document
readers, etc. that are running in a sandbox environment. Such
a sandbox environment can include applications installed by
and/or recognized by the sandboxed protection system. In
some embodiments, applications not installed by and/or rec-
ognized by the sandboxed protection system can be excluded
from the sandbox environment. Thus, the sandboxed protec-
tion system can understand the behaviors of the applications
running in the sandbox environment. In some embodiments,
any behavior that falls outside of “normal behavior” (i.e.,
anomalous behavior) can be classified as a potential infection.

In some embodiments, after the sandboxed protection sys-
tem detects anomalous behavior, the sandbox environment is
no longer clean. The event that produced the anomalous
behavior can be labeled as an infection. In some embodi-
ments, the user can be informed of the infection and/or can be
prompted to restore the sandbox to a clean state. Additionally,
in some embodiments, the behaviors originating from the
infection can be collected and/or organized into a forensic
report. This forensic report can be provided to a separate data
server when the user restores the sandbox to a clean state. In
other embodiments, the forensic report can be stored locally
instead of or in addition to providing the report to the separate
data server. A system administrator can, based on the forensic
report, view the forensic data. In some embodiments, the
forensic data can describe and/or show in detail what hap-
pened during the infection session, where the infection came

US 9,081,959 B2

3

from, which portions of the sandbox environment were
infected and/or which devices within a network were
infected. In other embodiments, the forensic data can include
a summary of the infections. In some embodiments, system
administrators can view the full scope of infections that could
have occurred on their network.

Apparatus, systems and methods are described herein to
provide control and detection of malicious content using a
sandbox environment. In some embodiments, a non-transi-
tory processor-readable medium storing code representing
instructions to cause a processor to perform a process
includes code to cause the processor to receive a set of indi-
cations of allowed behavior associated with an application.
The processor is also caused to initiate an instance of the
application within a sandbox environment. The processor is
further caused to receive, from a monitor module associated
with the sandbox environment, a set of indications of actual
behavior of the instance of the application in response to
initiating the instance of the application within the sandbox
environment. The processor is also caused to send an indica-
tion associated with an anomalous behavior if at least one
indication from the set of indications of actual behavior does
not correspond to an indication from the set of indications of
allowed behavior.

In some embodiments, an apparatus includes a control
module implemented in at least one of a memory or a pro-
cessing device. The control module is configured to initiate an
instance of a first application and an instance of a second
application within a sandbox environment. The control mod-
ule is also configured to receive, from a monitor module
associated with the sandbox environment, a set of indications
of actual behavior of the instance of the first application and
a set of indications of actual behavior of the instance of the
second application. An indication of a behavior is within both
the set of indications of actual behavior of the instance of the
first application and the set of indications of actual behavior
of'the instance of the second application. The control module
is also configured to classify the behavior as an anomalous
behavior for the first application based on a baseline behavior
set for the first application. The control module is configured
to not classify the behavior as an anomalous behavior for the
second application based on a baseline behavior set for the
second application. The control module is further configured
to send a signal in response to classifying the behavior as an
anomalous behavior for the first application.

In some embodiments, an apparatus includes a control
module implemented in at least one of a memory or a pro-
cessing device. The control module is configured to receive a
set of indications of allowed behavior associated with a first
application. The control module is configured to initiate an
instance of the first application within a sandbox environment
such that the instance of the first application initiates an
instance of a second application within the sandbox environ-
ment. The control module is also configured to receive, from
a monitor module associated with the sandbox environment,
a set of indications of actual behavior of the instance of the
second application in response to the instance of the first
application initiating the instance of the second application.
The control module is also configured to send an indication
associated with an anomalous behavior if at least one indica-
tion from the set of indications of actual behavior of the
instance of the second application does not correspond to an
indication from the set of indications of allowed behavior
associated with the first application.

As used herein, the singular forms “a,” “an” and “the”
include plural referents unless the context clearly dictates

otherwise. Thus, for example, the term “a “sandbox environ-

30

40

45

55

4

ment” is intended to mean a single sandbox environment or a
combination of sandbox environments (e.g., sandbox envi-
ronments with a series of configurations for classes of appli-
cations, for applications with different levels of trust, etc.).

FIG. 1A is a schematic illustration of a sandboxed protec-
tion system, according to an embodiment. As shown in FIG.
1A, a sandboxed protection system 121a can be operatively
coupled to at least one User Equipment (UE) 101a. A UE
101a can be a personal computer, a tablet computer, a mobile
telephone, a smart telephone, a personal data assistant (PDA),
etc. The UE 1014 can include at least a sandbox environment
105a that operates under a host operating system 103 of the
UE 101a. The UE 1014 can further include a data store 109a.
A data store can be, for example, a memory, a data storage
device such as a hard drive, or any component or recording
media used to retain digital data.

In some instances, the sandbox environment 1054 can
include an application helper module 107a. The application
helper module 107a is an application extension or add-on that
monitors activity within an application running on UE 101a.
For example, an application helper module 107a can be used,
under the supervision of the sandboxed protection system
121a, to monitor an identifier of a source of an anomalous
behavior. For example, the application helper module 107«
can monitor Uniform Resource Locators (URLs) accessed by
a user of UE 1014 using a browser application.

As used herein, a module can be, for example, any assem-
bly and/or set of operatively-coupled electrical components,
and can include, for example, a memory, a processor, electri-
cal traces, optical connectors, software (executing or to be
executed in hardware) and/or the like. Furthermore, a module
can be capable of performing one or more specific functions
associated with the module, as discussed further below.

The sandboxed protection system 121a can provide a secu-
rity mechanism for separating running programs associated
with UE 101a. In some instances, a sandbox environment
105a can be used by UE 101a under control of the sandboxed
protection system 121a to execute untested code, or untrusted
programs from unverified third-parties, suppliers, untrusted
users and untrusted websites. The sandboxed protection sys-
tem 121a can provide a tightly-controlled set of resources in
which guest programs can run, such as scratch space ona data
store 109a. In some instances, the sandboxed protection sys-
tem 1214 can limit, disallow, or restrict capabilities of a UE
101a such as, for example, network access, ability to inspect
a host system, read from input devices, etc.

As shown in FIG. 1A, a sandboxed protection system 121a
can include an application control module 123a, a sandbox
monitor module 1254, an event engine module 127a, a guest
monitor module 129a, a kernel mode module 131, a rule
generation module 133, a data store 135, and a trust classifi-
cation module 137. Furthermore, the sandboxed protection
system 121a communicates with one or more User Equip-
ments (UEs) 101a or other devices, computer network sys-
tems, etc., via input signal 139 and output signal 141. Thus,
FIG. 1A is merely an example illustrating the types of com-
ponents that can be included within a sandboxed protection
system 121a.

In various instances, the sandboxed protection system
121a and its components may be located anywhere within a
communication network system (not shown in FIG. 1A)
including, but not limited to, within the UE 1014, within one
or more service provider devices (not shown), or in separate
locations within the communication network system.

In some instances, the application control module 123a is
configured to control the sandbox environment 105a by send-
ing an output signal to the sandbox environment 105q via the

US 9,081,959 B2

5

output signal 141. For example, the application control mod-
ule 1234 can initiate a module within the UE 101a that is
executed by the host operating system 1034 using the sand-
box environment 1054 of UE 101a. The application control
module 123a can initiate the sandbox environment 105a, for
example by activating one or more applications and/or pro-
cesses within the sandbox environment 1054. The application
control module 1234 can also terminate a sandbox environ-
ment 105a by terminating one or more applications and/or
processes running within the sandbox environment 105a. The
application control module 1234 can also initialize or clean
the sandbox environment 105a by, for example, restarting the
sandbox environment 1054 or restoring a standard or pre-
defined set of configurations to the sandbox environment 105.

In some instances, the sandbox control module 123a is
configured to initiate a module to run within the sandbox
environment 105a to monitor application activity within the
sandbox environment 105a. In some embodiments, the appli-
cation helper module 1074 can monitor activity within the
sandbox environment 105a that the host operating system
1034 is unable to monitor outside the sandbox environment
105a.

In some instances, the kernel mode module 131 can control
akernel mode of operation of software applications within the
host operating system 103a. In some instances, in kernel
mode operation, a process can have complete and unrestricted
access to the underlying hardware of the UE 101a. In such
instances, the kernel mode module 131 enables a running
process to execute any Central Processing Unit (CPU) (not
shown) instruction and/or reference any memory (not shown)
address. In some instances, the kernel mode module 131 can
reserve the kernel mode operation for lowest-level, most
trusted functions of the host operating system 103a.

In some instances, the event engine module 127a can con-
trol a user mode of operation of software applications within
the host operating system 103a. In some instances, in user
mode operation, a process is unable to directly access hard-
ware and/or reference memory of the UE 101a. In some
instances, the event engine module 1274 enables a process
running in user mode to delegate requests to system Applica-
tion Programming Interfaces (APIs) to access hardware or
memory of the UE 101a. The protection provided by the user
mode isolation, enables the host operating system 103a to
recover crashes in user mode. In some instances, most of the
processes and/or code associated with applications running
on a UE 1014 can be executed in user mode controlled by the
event engine module 127a.

In some instances the application control module 123a can
activate the event engine module 127a. The event engine
module 127a can be included within the application control
module 123a. The event engine module 1274 is a rule-based
event processing engine that can determine if an event (e.g., a
process, a service, etc.) is allowed to be executed on UE 101a
or is an infection (e.g., a malware).

In some instances, the event engine module 127a can be
responsible for receiving event data and analyzing the
received data to determine if an anomalous behavior has
occurred. In some instances, the event engine module 127«
can receive data associated with events in substantially real-
time.

In some instances, the sandboxed protection system 121a
can substantially constantly and/or periodically detect
anomalous behavior and/or collect data associated with the
anomalous behavior from applications and/or processes in
the sandbox environment 105a. In some instances, the col-
lected data can be evaluated by the event engine module 127«
using a script (e.g., a rule-based filter) and the associated

10

15

20

25

30

35

40

45

50

55

60

65

6

processes can be added to a tree of processes and/or process
behaviors referred to herein as an evaluation tree, stored in
data store 1094 or in data store 135. In some instances, the
evaluation tree can be used by the event engine module 1274
to keep track of and/or monitor the current state of the sand-
box environment 1054. For example, if application Appl
launches application App2, then Appl is defined as a node in
the evaluation tree with App2 as its child. In some instances,
behaviors associated with a potential infection are added to
the evaluation tree and/or behaviors not associated to a poten-
tial infection are not added to the evaluation tree. In some
instances, as more information is gathered about a node (e.g.,
an application) in the evaluation tree, new information can be
associated with the node as an attribute. Upon occurrence of
an anomalous behavior, the evaluation tree can be serialized
to a forensic report. The forensic report can be stored in a data
store 109a or a data store 135 as a record of an infected
session.

In some instances, in order to effectively define what a
sandboxed application, process and/or service is allowed to
do, features of a product including the application and/or the
process can be defined ahead of time, for example by the
provider, or at run time, for example by the sandboxed pro-
tection system 121a, via regulated authorization. For
example, a rule can be defined to identify behaviors of a
sandboxed application, process and/or service that may trig-
ger an infection. The rule can be used by the event engine
module 127a to determine a behavior as allowed or not-
allowed for the sandboxed application, process and/or ser-
vice. In some instances, when defining allowable rules for file
and registry events, techniques such as, for example, wild
cards can be used as a shortcut to match a single rule to
multiple files and/or folders. Thus, in such instances, a bal-
ance can be reached regarding how strict each rule should be.
If'too many events associated with a process are allowed, then
a potential infection can be missed. However, if too many
events are restricted, then a false positive can alert the user of
UE 1014, in which an allowed behavior is detected as anoma-
lous.

Additionally, in some instances, some system administra-
tors can have the authority to pre-configure the sandboxed
applications with their own software applications, processes
and/or browser add-ons. In such instances, the system admin-
istrators can build and/or define a reliable set of rules that
covers the allowed behaviors of the applications and/or pro-
cesses and enters the rules into the sandboxed protection
system 121a via input signal 139. The rules may be stored by
the sandboxed protection system 121a in rules database 136a
and accessed by the application control module 123a, event
engine module 127a or other components of the sandboxed
protection system 121a. In some instances, to handle these
challenges, the sandboxed protection system 121a can asso-
ciate levels of trust to the applications and/or processes being
monitored in the sandbox environment 105a.

In some instances, the event engine module 127a can
receive a notification from the sandbox monitor module 1254
associated with a behavior of an instance of an application
running within the sandbox environment 105a. For example,
the event engine module 127a may receive a notification from
the sandbox monitor module 1254 indicating that an instance
of'a Web browser running within the sandbox environment
105a is trying to modify a system file. The event engine
module 1274 can receive a set of rules from the rules database
136a describing allowed behavior associated with the appli-
cation. The set of rules may include rules describing file
modification rights of the Web browser application. The event
engine module 131 can analyze the set of rules and determine

US 9,081,959 B2

7

whether the system file modification by the Web browser is
allowed. If the modification is allowed by the Web browser
the event engine module 127a can send a signal to the appli-
cation control module 1234 that the modification attempt by
the Web browser is an allowed behavior. The application
control module 1234 can, in response, allow the Web browser
instance to continue execution and modify the system file.
Otherwise, if the analysis results by the event engine module
127a indicate that the attempt by the Web browser to modity
the file system is not allowed, the event engine module 1274
indicates the system file modification as an anomalous behav-
ior and sends the indication to the application control module
123a. The application control module 123a can, in response,
terminate the file system modification attempt, terminate the
Web browser, terminate the sandbox environment 105a, or
take other predetermined actions associated with such
anomalous behaviors. Furthermore, the event engine module
1274 can store the anomalous behavior in the rules database
136a associated with the Web browser application.

In some instances, the trust classification module 137 can
associate a trust level to each application, process and/or
service that is executed within the sandbox environment
1054. The trust classification module 137 can also associate a
set of trusted processes with each application, process and/or
service. The trust level and/or the set of trusted processes may
be defined at least based on past behavior of the application,
process and/or service, user input, application, process and/or
service type, type of data associated with UE 101a that the
application, process and/or service attempts to access, etc.
The trust classification module 137 can store the trust level
and/or the set of trusted processes associated with each appli-
cation, process and/or service at the rules database 136a.

In some instances, the sandbox monitor module 1254 can
monitor activities of an instance of an application within the
sandbox environment 105a by tracing network activities of
the running instance of the application within the sandbox
environment 105a. The sandbox monitor module 1254 can
also monitor one or more executable files of the instance of
the application.

Insome instances, different levels of trust can be associated
with applications and/or processes based on monitoring of the
applications and/or processes by the sandbox monitor module
125a. For example, in some instances, an application, process
and/or service can be classified as “trusted”, “untrusted”,
“suspect”, or “unknown”. In some instances, such a classifi-
cation can be performed by a trust classification module 137
of'the sandboxed protection system 1214. In some instances,
the rule author (e.g., a system administrator) can make a
determination of whether an application, process and/or ser-
vice in the sandbox environment 105a is trusted or untrusted.
The sandboxed protection system 121a can then automati-
cally assign trust levels suspect and unknown after further
evaluation of the application, process and/or service. In other
instances, the rule author can also make the determination of
whether the application, process and/or service is suspect or
unknown. In still other instances, the sandboxed protection
system 121a can automatically assign a trust level to each
application, process and/or service based on a type of the
application, process and/or service (e.g., game, browser,
word processor, etc.), observed behavior of the application,
process and/or service, etc. In some instances, a system
administrator can request the sandboxed protection system
121a to override a trust level for an application, process
and/or service. Similarly, in some instances, a system admin-
istrator can request the sandboxed protection system 121a to
modify the trust levels of applications and/or processes. Clas-

10

15

20

25

30

35

40

45

50

55

60

65

8

sifying the trustworthiness of each process in a guest appli-
cation can provide flexibility for customization of the scope
of malware detection.

In some instances, declaring a process as trusted in the
rules, can essentially imply that any possible behavior exhib-
ited and/or actions performed by the process and/or the pro-
cess’s child processes are considered as allowed behavior. In
some instances, trusted processes can be allowed to perform
any action. In such instances, by classifying a process as
trusted, the sandboxed protection system 121a can effectively
disable detection for that process. In such instances, for
example, if a trusted process launches a child process, the
child process can inherit the trust and become trusted. As
another example, if a file is written by a trusted process and
launched by a different process, the new process can be
trusted because the file inherits the trust from the trusted
process. This behavior can be common for programs that
update themselves. In other instances, a system administrator
can request the sandboxed protection system 121a for manual
or rule-based reclassification of each child process launched
and/or written by a trusted process.

Trusting a process is, typically, a less secure option than not
trusting the process. Thus, in some instances the sandboxed
protection system 121a can warn the system administrators
about the risk of adding new software into the sandbox envi-
ronment 1054. For example, a system administrator that
would like to install a WebEx application, process and/or
service in the sandbox environment 1054 but would also like
to avoid defining allowed behaviors for the WebEx process
and all child processes can declare WebEx.exe as a trusted
process. In some instances, a system administrator can
declare a process as trusted by providing the path to the root
process to a trusted process section of the rules stored in rules
database 1364 and processed by the event engine module
127a.

In some instances, processes that are monitored by the
sandbox monitor module 1254 as potential propagation meth-
ods for infection can be declared and/or classified as
untrusted by the trust classification module 137. In some
instances, if the event engine module 1274 detects that an
untrusted application, process and/or service performs a sus-
picious behavior that is not explicitly defined as allowed, this
is a trigger for an infection. In some instances, the rules
database 136a can include whitelisted rules for untrusted
applications and/or processes that define normal trusted oper-
ating behaviors of the applications and/or processes.

For example, in a Microsoft Windows environment, a main
account in the sandbox environment 105a¢ can run and/or
execute as a limited user. Therefore, some processes associ-
ated with the main account may not have permission to
modify registry keys inside HKEY_LOCAL_MACHINE. If
aprocess without having the permission attempts to modify a
portion of the registry key, the sandboxed protection system
121a can recognize the attempted modification as a trigger
behavior for an infection. A process P, however, which runs in
the system context, can have permission to modify registry
keys inside HKEY_TLLOCAL_MACHINE. In order to prevent
process P from triggering an infection, a rule that allows P to
access the registry key can be defined (as seen in the Heuristic
Table shown below).

In some instances, after an infection has occurred, the
process that caused the infection can be classified, by the
sandboxed protection system 121a, as suspect. In some
instances, after the process is classified as suspect, the sand-
boxed protection system 121a can record subsequent behav-
iors being performed by the process and/or its child pro-
cesses. In some instances, similar to trusted processes,

US 9,081,959 B2

9

behavior originating from a suspect process can inherit the
suspect trust level. After an event is evaluated as being suspect
by the event engine module 1274, it can be added to the
evaluation tree so that it can be serialized into a forensic report
(e.g., areport file in data store 135). The forensic report can be
analyzed by the event engine module 127« and can provide
details of the suspect events.

In some instances, additional information on suspect
behaviors and/or events associated with processes and appli-
cations such as, for example, cryptographic hash functions
(e.g., Message Digest (MDS5) hashes, Secure Hash Algorithm
(SHA) hashes, etc.) providing unique signatures for files, can
be captured by the sandboxed protection system 121a. After
a hash value is calculated, it can be sent to the event engine
module 1274 to be attached as an attribute to the application
and/or the process in the evaluation tree. The hash value can
be used to lookup and/or compare the triggering application,
process and/or service against a third-party malware (e.g.,
virus) database. This lookup can provide information about
number of anti-virus clients that scanned the process as being
infected.

In some instances, the sandboxed protection system 121a
also includes a user-configurable feature which can terminate
and/or kill any suspect processes as they are detected. Insome
instances, the process termination can be accomplished by
terminating and/or killing a process as soon it is classified as
suspect. In other instances, the sandboxed protection system
121a can provide information about the suspect processes to
a system administrator and allow the administrator to termi-
nate and/or kill a process.

In some instances, a process can be classified as unknown
if its path is not explicitly listed as trusted or untrusted in the
rules database 1364. In some instances, because this process
has not yet been configured and/or classified, it can perform
actions and/or behaviors without triggering an infection. In
some instances, however, unlike trusted processes, the
unknown trust of this process is not inherited across child
processes. An unknown process can, for example, launch an
application Appl, and application Appl can be tracked as
untrusted. In some instances, because unknown process
behaviors are important to know about and evaluate, the
behaviors of an unknown process can be added to the evalu-
ation tree and can show up in an infection report (e.g., a
forensic report) if the session becomes tainted. While four
trust levels are shown and described herein, in other instances
any number of trust levels can be used.

In some instances, designing the allowable behavior rules
can depend on the types of behaviors that can trigger an
infection. In some instances, for example, infections can be
determined based on the following heuristics table. In various
instances, other infection triggers can be added with addi-
tional sensors and/or types of events.

In some instances, when an infection is detected, an
attempt can be made by the sandboxed protection system
121a to determine the originating source of the infection. For
example, if the infection is triggered by a web browser (e.g.,
Internet Explorer, Firefox, etc.), or a child process of a web
browser, then the source can be determined based on a URL
history of a user of UE 101a. The URL trace events can be
captured from an application helper module 1074 attached to
the web browser. The URL trace events can be fed to the event
engine module 1274, which then correlates the main URIL and
any URLs redirected from that main URL with an infection.
The event engine module 1274 can correlate the URLs by
tracing backwards in time from the most recent URL match-
ing a Process Identifier (PID) associated with an infection

10

15

20

25

30

35

40

45

50

55

60

65

10

root. For another example, a process, application, service
and/or the like can be identified as the originating source of
the infection.

In some instances, for example, the sandboxed protection
system 121a can allow a user of UE 1014 to launch a portable
document format (PDF) file on the UE 101a for viewing
inside the sandbox environment 105a. Since PDF readers are
aprime attack propagation method for viruses, the sandboxed
protection system 121a can trace the source to the PDF file if
an infection is originated from the PDF reader or its child
processes. The sandboxed protection system 121a can do this
by keeping and/or maintaining a map of processes in the
sandbox environment 105a that were launched when the PDF
file was redirected from the host operating system 103a.
When an infection occurs, the sandboxed protection system
121a can check the map to see if the PDF file belongs to an
infected process. This technique can be used to track an
infection if other redirected documents from the host operat-
ing system 103q are determined to be the source of an infec-
tion.

Heuristics Table

1. Ifan untrusted process launches another process that is not
explicitly allowed,
2. If an untrusted process terminates another process that is not
explicitly allowed,
3. If an untrusted process writes a file and the file is launched
by a process with unknown trust,
4. If an untrusted process modifies a sensitive registry value that
is not explicitly allowed, for example:
a. HKEY_ LOCAL_MACHINE
b. HKEY_ CLASSES_ ROOT
¢. Any windows startup key
d. Any policy key,
5. If an untrusted process modifies a sensitive file path that is not
explicitly allowed, Examples of restricted paths are:
a. C:\Windows\System32
b. C:\Program Files
6. If an untrusted process deletes, renames, or overwrites an executable
file,
7. If an untrusted process makes a TCP/UCP connection that is not
explicitly allowed,
8. If an untrusted process set up a TCP/UDP listener that is not
explicitly allowed.

After the source of an infection is determined, the source
can be added as a node in the evaluation tree as a child of the
infected process and/or application. This source can be
included in the summary of infection report (e.g., the forensic
report) provided to a system administrator by the sandboxed
protection system 121a. In some instances, if no source for
the infection is found, the name of the infected process can be
used.

As previously discussed, rules can be defined and stored in
the rules database 136a by users, by system administrators,
by application providers, etc. A set of rules can be associated
with each application, process and/or service. The set of rules
associated with an application, process and/or service define
allowed behavior of the application, process and/or service.
In some instances, the rules associated with an application,
process and/or service can be used by the event engine mod-
ule 127a to determine whether a behavior triggers and/or is
associated with an infection. The rules can be divided up into
aplurality of rule sets, for example a main rule set (e.g., rules
associated with the host operating system 103a), a custom
rule set (e.g., rules associated with applications and/or pro-
cesses), etc. In some instances, the main rule set can be
provided with and/or standard to the sandboxed protection
system 121a. In some instances, system administrators can

US 9,081,959 B2

11

introduce their own custom rule sets by entering rules into the
sandboxed protection system 121qa via input 139. In some
instances, the applications executed in sandbox environment
105a (e.g., browsers) can be customizable for installing soft-
ware. A custom rule set file can enable the event engine
module 1274 to define allowable behaviors for new processes
that would otherwise trigger an infection. When the event
engine module 127q is initialized, the main rule set can be
merged with the custom rule sets and, for example, compiled
into a byte code. The sets of rules may be stored in the rules
database 136a.

In some instances, the sandboxed protection system 121a
includes a rule generation module 133 that automatically
generates rules for an application, process and/or service
based on previously declared infections associated with same
or similar applications and/or processes (e.g., applications
with the same type). For example, the rules generation mod-
ule 133 can generate rules based on infections that have been
declared as false positives. The rule generation module 133
can also generate rules based on sets of rules existing in the
rules database 136a for the application, process and/or ser-
vice. The rule generation module 133 can address various
issues associated with application, process and/or service
behavioral detection. For example, the rule generation mod-
ule 133 can define allowed behaviors for new applications.
The rule generation module 133 can also provide a false
positive infection report (e.g., forensic report) and convert the
report into a new set of rules. The rule generation module 133
can further enable a system administrator to develop rules for
their own set of plug-ins that have not been already declared
and/or included in the main rule set.

In some instances, the sandboxed protection system 121a
can include functionality to automatically generate allowed
rules from an infection that may be a false positive. In some
instances, for example, the system administrators can view
the forensic report provided by the sandboxed protection
system 121a and provide an indication to allow a process
and/or behavior of a process. For example, the system admin-
istrator can click a button labeled “Allow . . . ” next to the entry
for a process and/or behavior of a process. In some instances,
this button can enable the system administrator to add the
process and/or behavior of the process to the main rule set
(e.g., windows.rul) and/or a custom rule set (e.g., custom.rul).
In some instances, a system administrator can provide an
input to the sandboxed protection system 121a to trust new
processes, for example by selecting a checkbox for “Trust
newly encountered processes”, the system administrator can
automatically classify new processes as trusted, which, while
less secure, can reduce the chance of false positives.

In some instances, when a user of a UE 101a generates
custom rules, the forensic report, the main rule set, and/or the
custom rule set (if exists) can be sent from UE 1014 to the rule
generation module 133 via input signal 139. The rule genera-
tion module 133 can receive the inputs and generate a new
custom rule set, for example to be saved in rules database
136a. After the new custom rule set is generated, the sand-
boxed protection system 121a can send a signal to the UE
101a via output signal 141. In response to the signal, the UE
101a can provide an option to the user (e.g., a button) to
display a save dialog that allows the user to retrieve the newly
defined custom rule set from the rules database 136a.

Additionally, in some instances, the sandboxed protection
system 121a can be set to a training mode. The training mode
can be, for example, a command line parameter. In some
instances, while the sandboxed protection system 121a is in
training mode, infections sent to the UE 101a can be flagged
by the event engine module 127q as training samples and

10

15

20

25

30

35

40

45

50

55

60

65

12

distinguished visually (e.g., in a report and/or in the rule
generation module 133) from real infections with an indicator
such as a different color or special icon. This can help distin-
guish between actual infection reports and training samples
that are used to generate rules by the rule generation module
133. In some instances, training samples can then be con-
verted into additional rules automatically or via interaction
with the system administrator. The events collected in the
training sample can be filtered, reduced and/or output as new
detection rules. The new rules can be downloaded and used by
the event engine module 127a for future detection and/or
analysis.

In some instances, for determining behavior of the pro-
cesses executed in the sandbox environment 105a, multiple
sensors (not shown) can be defined and/or set up on the UE
101a to capture events (e.g. anomalous behavior) and collect
data about events. In some instances, the sensors can include
module detection (e.g., process detection). In some instances,
even though the sandboxed protection system 121« can clas-
sify a new process as trusted, false positives can still occur.
For example, when writing rules for a WebEx plug-in,
although WebEx is installed and webex.exe has been declared
and/or classified as a trusted process, webex.dll is still loaded
into a browser (e.g., Internet Explorer). Anything webex.dll
does can show up as a behavior originating from the browser
(e.g., iexplore.exe). Therefore in order to fully whitelist
WebEx, the sandboxed protection system 121a can whitelist
suspicious behaviors for the browser that could otherwise be
compromising. In order to solve this problem, the sandboxed
protection system can understand what modules are doing
irrespective of the process into which they are loaded.

Similarly stated, the sandboxed protection system can
separate behaviors from modules and processes. Referring to
the above example, the sandboxed protection system can
declare, classify and/or recognize webex.dll as a trusted mod-
ule. Anything webex.dll does can be allowed, however, the
browser (e.g., iexplore.exe) can trigger an infection if it per-
forms the same suspicious behavior. Similarly, in some
embodiments, the sandboxed protection system can declare,
classify and/or recognize webex.dll as untrusted but whitelist
the behaviors originating from that module for added secu-
rity.

In some instances, the guest monitor module 1294 provides
an operating system device driver that can monitor and/or
report activity associated with a network, a file system, a
registry and/or initiation and/or termination of processes
within UE 101a.

The data collected by the sensors can be stored in data store
109a and sent to the event engine module 127a to be pro-
cessed and analyzed based on a previously defined list of
allowed behavior for the processes.

In some instances, the events can be captured in substan-
tially real-time. For example, events can be captured using a
kernel driver that hooks onto and/or monitors process events,
file events, registry events, and/or network events as the
events are being performed. In some instances, for example,
the application helper module 1074 can be loaded in a web
browser (e.g., Internet Explorer or Firefox) to capture Uni-
form Resource Locator (URL) events. These captured events
can be sent to the event engine module 1274 for analysis. The
event engine module 127a can process each event by running
it through a rule-based filter. In some instances, the rules for
the rule-based filter can be defined using a scripting language
optimized to filter events efficiently. As shown in FIG. 1A, the
host operating system 103« executes a sandbox environment
105a controlled by a sandboxed protection system 121a.

US 9,081,959 B2

13

In some instances, the sandboxed protection system 121a
can be activated by instructions stored in a memory (e.g., a
non-transitory processor-readable medium 113) on the UE
101a. Additionally, in some instances, the sandboxed protec-
tion system 121a can include additional modules and/or
engines such as, for example, a trust classification module, a
rule engine, a detection engine, and/or the like (each not
shown). Such modules and/or engines can be hardware mod-
ules and/or engines, or software modules and/or engines
executing in hardware.

FIG. 1B is a schematic illustrations of a sandbox environ-
ment 1055 within a UE 10154. In FIG. 1B components 1015,
1035,1055, 1076, 123ab, 125b, 127b, and 1295 are structur-
ally and/or functionally similar to components 101a, 103a,
1054, 107a,123a, 125a, 1274, and 129a of FIG. 1A, respec-
tively. In the instance shown in FIG. 1B, the application
control module 1235 can execute within the host operating
system 1035, the event engine module 1275 can execute
within the application control module 1235, and the sandbox
monitor module 1255 can execute within the sandbox envi-
ronment 1055. In other embodiments, the sandbox monitor
module 1255 can execute on the host operating system 1035
but outside the sandbox environment 1055.

In some instances, applications 153 such as web browsers,
documents viewers, etc. are executed within the sandbox
environment 1055. The sandbox monitor module 1255 and
the application helper module 1075 report application events
(e.g., application behaviors) 155 associated with applications
153 to the application control module 1235. The application
control module 1235 can control the sandbox environment
1054 (shown as arrow 157), for example by initiating, termi-
nating, or modifying applications and/or processes executed
within the sandbox environment 1055 using the application
events 155. Furthermore, the guest monitor module 1295
reports kernel mode events such as events associated with the
host operating system 1035 to the application control module
1234 (shown as arrow 159). In some instances, the applica-
tion control module 1235 and/or the event engine module
1275 can use the operating system events 159 for controlling
the applications 153 within the sandbox environment 1055.

Examples ofthe processes by sandboxed protection system
121a are further described below in connection with flow-
charts of FIG. 3, FIG. 4, FIG. 5, and FIG. 6.

FIG. 2 is a schematic block diagram of a computer network
system to control and detect malicious content, according to
an embodiment. In some instances, a computer network sys-
tem 200 can include one or more user devices or user equip-
ments (UEs) 201a-201%. UEs 201a-201# can be structurally
and/or functionally similar to UE 101a of FIG. 1A. The
computer network system 200 further includes a sandboxed
protection system 203 (structurally and/or functionally simi-
lar to the sandboxed protection system 121a of FIG. 1A), one
or more application provider(s) 209, one or more execution
server(s) 211, each of which can be operatively coupled to
each other via a communication network 205. Thus, FIGS.
1A and 1B are merely examples illustrating the types of
devices that can be included within a computer network sys-
tem 200.

In some instances, the sandbox protection system 203 can
control the sandbox environments 2074¢-207» via the com-
munication network 205. In such instances, control signals
can be sent between the sandbox protection system 203 and
the sandbox environments 2074-207x via the communication
network 205. For example, the sandbox environments 207a-
2077 can be running on an execution server 211 that a user of
UE 201a-2017 can access remotely by a sandbox access
module 221¢-221n via the communication network 205.

10

15

20

25

30

35

40

45

50

55

60

14

Each UE 201a-2017 has access to a sandbox environment
207a-207r located within one or more execution server(s)
211. The sandbox environments 207a-207z are structurally
and/or functionally similar to the sandbox environment 1054
and 1056 of FIGS. 1A and 1B.

In some embodiments, the sandboxed protection system
203 can be operatively coupled to the UEs 201a-201# via, for
example, a communication network 205. In such embodi-
ments, control signals can be sent between the sandboxed
protection system 203 and the UEs 201a-201% via the com-
munication network 205. As previously discussed, the sand-
boxed protection system 203 and its components may be
located anywhere within a communication network system
205 including, but not limited to, within the UEs 201a-2012,
or in separate locations within the communication network
system 205.

The execution server(s) 211 are equipped with one or more
processors and one or more data storages (e.g., memories). A
storage location on the execution server(s) 211 can be asso-
ciated with the UE 2014 as a sandbox environment 201. For
example, the UE 201a may have access to a sandbox envi-
ronment 2074 installed on the execution server(s) 211 such
that the UE 2014 can access the sandbox environment 207a
via the communication network 205 and can execute appli-
cations and/or processes within the sandbox environment
207a on the execution server(s) 211. In this example, the UE
201a can initiate downloading an application from the appli-
cation provider(s) 209 into the sandbox environment 2074
(on the execution server(s) 211). The UE 201a can then
initiate execution of the application on the execution server(s)
211. The sandbox protection system 203 can control the
execution of the downloaded application on the execution
server(s) 211 via the communication network 205.

Communication network 205 can be any communication
network, such as the Internet, an Intranet, a Local Area Net-
work (LAN), a Wide Area Network (WAN), a telephone
network, an Ethernet network, a fiber-optic network, a wire-
less network, a cellular network, etc., configurable to allow
the one or more UEs 201a-201#, the sandboxed protection
system 203, the one or more application provider(s) 209, and
the one or more execution server(s) 211 to communicate with
communication network 205 and/or to each other through
communication network 205.

In some instances, communication network 205 can
include multiple networks operatively coupled to one another
by, for example, network bridges, routers, switches and/or
gateways. For example, the UEs 2014-201% can be opera-
tively coupled to a cellular network and the application pro-
vider(s) 209, the sandboxed protection system 203, and/or the
one or more execution server(s) 211 can be operatively
coupled to a fiber-optic network. The cellular network and the
fiber-optic network can each be operatively coupled to one
another via one or more network bridges, routers, switches,
and/or gateways such that the cellular network, the Ethernet
network and the fiber-optic network are operatively coupled
to form a communication network. Alternatively, the cellular
network and fiber-optic network can each be operatively
coupled to one another via one or more additional networks.
For example, the cellular network and the fiber-optic network
can each be operatively coupled to the Internet such that the
cellular network, the fiber-optic network and the Internet are
operatively coupled to form a communication network.

As illustrated in FIG. 2, UEs 201a-2017 are operatively
coupled to communication network 205 via network connec-
tion 213; application provider(s) 209 are operatively coupled
to communication network 205 via network connection 215;
execution server(s) 211 are operatively coupled to communi-

US 9,081,959 B2

15

cation network 205 via network connection 217; and the
sandboxed protection system 203 is operatively coupled to
communication network 205 via network connection 219.
Network connections 213, 215, 217, and 219 can be any
appropriate network connection for operatively coupling UEs
201a-201n, application provider(s) 209, execution server(s)
211, and the sandboxed protection system 203.

A network connection can be a wireless network connec-
tion such as, for example, a wireless fidelity (“Wi-Fi”) or
wireless local area network (“WLAN”) connection, a wire-
less wide area network (“WWAN”) connection, and/or a cel-
lular connection. A network connection can be a wired con-
nection such as, for example, an Ethernet connection, a digital
subscription line (“DSL”) connection, a broadband coaxial
connection, and/or a fiber-optic connection.

As mentioned above, in some instances, a computer net-
work system 200 can include more than one UE 2014-201%,
more than one sandboxed protection system 203, more than
one application provider(s) 209, and more than one execution
server(s) 211. A UE 201a-201#, a sandboxed protection sys-
tem 203, an application provider 209, and/or an execution
server(s) 211 can be operatively coupled to the communica-
tion network 205 by heterogeneous network connections. For
example, a first UE 201a-2017 can be operatively coupled to
the communication network 205 by a WWAN network con-
nection, a second UE 201a-201#% can be operatively coupled
to the communication network 205 by a DSL network con-
nection, and a sandboxed protection system 203 can be opera-
tively coupled to the communication network 205 by a fiber-
optic network connection.

The application provider(s) 209 can be, for example, a web
server configured to provide various applications to elec-
tronic devices, such as UEs 201a-2017. For example, the UE
201a-201#7 can be in communication with the application
provider(s) 209 via the communication network 205 under
the supervision of the sandboxed protection system 203.

The UEs 201a-201% can be any of a variety of electronic
devices that can be operatively coupled to communication
network 205. A UE 2014-201# can be a personal computer, a
laptop computer, a personal digital assistant (PDA), a cellular
telephone, a portable/mobile internet device and/or some
other electronic communication device. The UEs 201a-201x»
can include a web browser configured to access a webpage or
website hosted on or accessible via the application provider
(s) 209 over communication network 205. The UEs 201a-
2017 can be configured to support, for example, HTML using
JavaScript. For example, the UEs 201a-201# can include a
web browser, such as, Firefox, Safari, Opera and Chrome. An
Internet page or website can be accessed by a user of a web
browser at a UE 201a-2012 by providing the web browser
with a reference such as a uniform resource locator (URL),
for example, of a webpage. For example, a user of a UE
201a-2017 can access an application provider 209 via a URL
designated for the application provider 209. In some
instances, UEs 201a-201~ can include specialized software
for accessing a web server other than a browser, such as, for
example, a specialized network-enabled application or pro-
gram.

In some instances, portions of a website accessible via a
web server, for example an application provider 209, can be
located in an execution server(s) 211 accessible to the appli-
cation provider 209. A memory, within the execution server
(s) 211, can be at least one of a database, a data warehouse,
and/or the like. A UE 201a-201#% can also include a display,
monitor or user interface (UI), a keyboard, various ports (e.g.,
a USB port), and other user interface features, such as, for
example, touch screen controls, audio components, and/or

10

15

20

25

30

35

40

45

50

55

60

65

16

video components (each not shown). A UE 201a-201% can be
operatively coupled to communication network 205 via the
UI and network connection 213.

FIG. 3 is a flowchart of a process for implementing a
sandboxed protection system, according to an embodiment.
In one embodiment, the sandboxed protection system 121a of
FIG. 1A executes the process 300. Additionally, processor-
readable instructions to execute the process can be stored in
data store 109a and/or in data store 135. At step 301, the
sandbox control module 1234 initiates a sandbox environ-
ment 105a. The sandbox environment 1054 can, for example,
be executed within the host operating system 103 that runs on
a processor of the UE 101a. Furthermore, the sandbox envi-
ronment 1054 can be configured to execute applications and/
or processes such as, for example, a web browser or any other
application, process and/or service at risk of receiving mali-
cious content.

At 303, a set of rules for processes within the sandbox
environment 105a is defined by the rule generation module
133. The rules can include, for example, classifying processes
and/or applications using trust classifications provided by the
trust classification module 137. In some instances, the rules
can include predefined rules for the system and/or custom
defined rules by a system administrator. The rules are stored
in the rules database 1364.

At 305, the sandbox monitor module 1254 monitors events
and activities associated with running applications and/or
processes within the sandbox environment 105a, based onthe
rules associated with the applications and/or processes. The
sandbox processes can be monitored based on the rules in the
rules database 1364. The sandbox monitor module 1254 can
report any anomalous event or activity to the event engine
module 127a.

At 307 the event engine module 1274 analyzes the report
received from the sandbox monitor module 125a with refer-
ence to the associated rules in the rules database 136a to
determine whether the anomalous behavior is malicious. The
event engine module 127a can declares an infection based on
the detected malicious behavior and the rules of the rules
database 136a.

At 309, the event engine module 127a adds the detected
infection to an evaluation tree within the data store 135. The
evaluation tree can be used for further analysis of the infection
by the sandboxed protection system 121a or by a system
administrator. The analysis results can be used by the rule
generation module 133 for updating the rules database 136a.

In some instances (not shown in FIG. 3), the sandboxed
protection system 121a can automatically and/or dynami-
cally disable and/or ignore an infection detection. Disabling
and/or ignoring detection events can be used, for example, in
cases where some events are generated intentionally that oth-
erwise would trigger the event engine module 127a to report
an infection. For example, if a user of UE 101« intentionally
runs an unknown process such as an application or an installer
in the sandbox environment 105a without previously defining
rules to trust the process.

At 311, the rule generation module 133 revises the rules in
the rules database 136a based on the detected infections
reported as the evaluation tree. In some instances, the rule
generation module 133 can automatically revise the rules in
the rules database 136a based on the monitored behavior of
the sandbox environment 1054 by the sandbox monitor mod-
ule 1254 and the analysis of the monitored behavior, includ-
ing the infections detected by the event engine module 127a.
In other instances, a system administrator can manually
revise the rules based on the detected infections, evaluation

US 9,081,959 B2

17

tree content, etc. In still other instances, the rules may remain
unchanged based on the infection.

At 313, the sandboxed control module 123a restarts the
sandbox environment 105a, such that the infected environ-
ment can be terminated and a new clean sandbox environment
105a can be restarted. The process of monitoring the sandbox
environment 105¢ by the sandbox monitor module 125a
based on the rules of the rules database 1364 can then con-
tinue with the clean sandbox environment 105a. Alterna-
tively, the sandbox control module 1234 can terminate and/or
restart the application, process and/or service with malicious
behavior without restarting the sandbox environment 105a.

FIG. 4 is a flowchart of a process for control and detection
of malicious behavior of an application based on allowed
behavior, according to an embodiment. In some instances, at
401 the application control module 123a can execute a code
to receive a set of indications of allowed behavior associated
with an application, based on a set of rules in the rules data-
base 136a. The application control module 123a can, for
example, retrieve the indications from data store 135, receive
the indications from a system administrator via input signal
139, and/or the like. The application control module 1234 can
store the received indications in data store 135. At 403, the
application control module 123a sends a signal to the host
operating system 103 via output signal 141 to initiate an
instance of the application in the sandbox environment 105a.

At 405, the event engine module 1274, receives, from the
sandbox monitor module 1254, a set of indications of actual
behavior of the instance of the application within the sandbox
environment 105a. The event engine module 1274 can store
the actual behavior indications in the data store 135.

At 407, the event engine module 127a analyzes the actual
behavior of the instance of the application in comparison with
the allowed behavior associated with the instance of the appli-
cation in the data store 135, to detect correspondences and
discrepancies. Ifthe allowed behavior and the actual behavior
correspond, the event engine module 127a can conclude that
no infection has occurred and malicious behavior has not
been detected.

If at least one indication from the set of indications of
actual behavior does not correspond to an indication from the
set of indications of allowed behavior, at 409 the event engine
module 1274 sends an indication associated with an anoma-
lous behavior to the application control module 123a. The
indication associated with the anomalous behavior can be
used by the application control module 1234 to terminate the
application and/or to terminate sandbox environment’s pro-
cess, to send an indication of the anomalous behavior to a
system administrator or to a user, and/or the like.

In some instances, the application control module 123a can
send the indication associated with the anomalous behavior to
the event engine module 127a, for example to define an
evaluation tree. The evaluation tree including the indication
associated with the anomalous behavior can be stored in data
store 135 associated with the application, for example added
to the rules database 136a associated with the application.

In some instances, the sandbox monitor module 1254 can
be configured to monitor at least one event of the instance of
the application within the sandbox environment 1054 such as,
for example, process events (e.g., executing unauthorized
processes) of the instance of the application, file events (e.g.,
access of unauthorized files) of the instance of the applica-
tion, registry events (e.g., registry updates) of the instance of
the application, network events (e.g., network connection
events) of the instance of the application, or thread injection
events (e.g., behavior associated with inserting and run

40

45

50

55

18

executable code within the address space of another process)
of' the instance of the application, etc.

In some instances, the rule generation module 133 uses the
anomalous behavior detected by the event engine module
127a and revises the set of indications (rules) of allowed
behavior associated with the application. The revised set of
rules can replace the set of rules in the rules database 136a.

In some instances the indication associated with the
anomalous behavior can include a trace associated with a
source of the anomalous behavior. For example, the applica-
tion can be a web browser application and the indication
associated with the anomalous behavior can include a uni-
form resource locator (URL) trace associated with the web
browser application. For another example, the source trace
can include an identifier of an application, process, service
and/or the like. The source trace enables the rule generation
module 133 to revise the rules to enable the sandbox control
module 123a to control application access to the sources that
cause anomalous behavior of the application.

In some instances, the set of rules indicating allowed
behavior associated with the application is based at least in
part on a trust level associated with the application. The trust
level can be defined by the trust classification module 137
based on, for example, user input, previous behavior of the
application (e.g., history of actual behavior in data store 135),
application type, etc. Furthermore, the set of indications of
allowed behavior associated with the application can include
an identifier of a trusted process associated with the applica-
tion.

In some instances, the sandbox monitor module 1254 can
monitor activities of an instance of an application within the
sandbox environment 105a by tracing network activities of
the running instance of the application within the sandbox
environment 105q. The sandbox monitor module 1254 can
also monitor one or more executable files of the instance of
the application.

FIG. 5 is a flowchart of a process for control and detection
of' malicious behavior of an application based on application
type, according to an embodiment. The sandbox environment
105a can have multiple instances or different applications or
instances of the same application running simultaneously.
The sandbox monitor 125a and the application control mod-
ule 1234 can monitor and control the running applications. As
shown in FIG. 5, at 501 the application control module 123a
initiates an instance of a first application and an instance of a
second application within a sandbox environment 1054.

At 503 the event engine module 127a receives, from a
sandbox monitor module 1254 associated with the sandbox
environment 1054, a set of indications of actual behavior of
the instance of the first application and a set of indications of
actual behavior of the instance of the second application. The
first application and the second application can be from the
same application type (two instances of the same application
running simultaneously on sandbox environment 105a) or
from different application types (two different applications
running simultaneously on sandbox environment 105q). In
some instances the set of indications of actual behavior of the
instance of the first application and the set of indications of
actual behavior of the instance of the second application can
overlap such that the instance of the first application and the
instance of the second application may show the same actual
behavior. However, the same actual behavior that can be
declared as anomalous behavior for an instance of the first
application can be declared as an allowed behavior for an
instance of the second application, or vise versa.

At 505, the event engine module 127a checks the rules
database 136a to find a baseline behavior set for the first

US 9,081,959 B2

19

application (e.g., a set of allowed behavior for the first appli-
cation). If the actual behavior is an anomalous behavior for
the first application based on the baseline behavior set for the
first application in the rules database 1364, the event engine
module 127a classifies the actual behavior as anomalous
behavior for the first application.

At 507 the event engine module 127a checks the rules
database 1364 to find a baseline behavior set for the second
application. If the actual behavior is not an anomalous behav-
ior for the second application based on the baseline behavior
set for the second application (e.g., a set of allowed behavior
for the second application) in the rules database 1364, event
engine module 127a does not classify the actual behavior as
anomalous behavior for the second application.

For example, the event engine module 127« can classify a
behavior B as an anomalous behavior for the first application
based on a baseline behavior set for the first application, but
not classify the behavior B as an anomalous behavior for the
second application based on a baseline behavior set for the
second application.

Note that, as shown in FIG. 2, the sandboxed protection
system 203 can be located within the UEs 201¢-201%, orin a
separate location coupled with the UEs 2014-201# via the
communication network 205. Therefore, in some instances,
as shown in FIG. 2, the sandboxed protection module 203 can
include the sandbox environments 207a-207x.

In some instances, the sandbox control module 123a can be
operatively coupled to the sandbox environment 1054 via a
network. For example, as shown in FIG. 2, the sandboxed
protection system 203 that includes the sandbox control mod-
ule 123a is coupled to the UEs 201a-201r, that include sand-
box environments 2074-207#, via communication network
205 by network connections 213 and 219.

In some instances, the set of indications of actual behavior
of' the instance of the first (or second) application includes at
least one of a process event identifier of the instance of the
first (or second) application, a file event identifier of the
instance of the first (second) application, a registry event
identifier of the instance of the first (or second) application or
a network event identifier of the instance of the first (second)
application.

At 509, the event engine module 127a can send a signal to
other components of the sandboxed protection system 121a
such as the application control module 1234 to indicate clas-
sifying of the actual behavior as anomalous behavior for the
first application. The application control module 123a can
send a signal to initiate actions such as first application ter-
mination, sandbox environment 1054 termination, notifying
a system administrator or a user about the anomalous behav-
ior, etc.

FIG. 6 is a flowchart of a process for control and detection
of malicious behavior of an application based on another
application, according to an embodiment. In some instances,
an application running within the sandbox environment 105a
can initiate one or more other applications within the sandbox
135. At 601 the sandbox control module 1234 receives, from
arules database 1364, a set of indications of allowed behavior
associated with a first application.

At 603, the sandbox control module 1234 initiates an
instance of the first application within a sandbox environment
105a such that the instance of the first application initiates an
instance of a second application within the sandbox environ-
ment 105a. For example, execution of the first application can
start execution of a second application without an interven-
tion by the application control module 123a. The sandbox
monitor module 125a can detect initiation of the second

10

15

20

25

30

35

40

45

50

55

60

65

20

application and report the initiation to the application control
module 1234 and/or to the event engine module 1274.

At 605, event engine module 127a receives, from the sand-
box monitor module 1254 associated with the sandbox envi-
ronment 1054, a set of indications of actual behavior of the
instance of the second application, as previously discussed
with regards to FIG. 5, in response to the instance of the first
application initiating the instance of the second application.
The first application and the second application can be from
the same application type or from different application types.

If at least one indication from the set of indications of
actual behavior of the instance of the second application does
not correspond to an indication from the set of indications of
allowed behavior associated with the first application, at 607,
the event engine module 127a sends an indication associated
with an anomalous behavior associated with the second appli-
cation to the application control module 123a. The indication
associated with the anomalous behavior can be used by the
application control module 123a to terminate the second
application and/or the sandbox environment process, etc. Fur-
thermore, the event engine module 1274 can add the anoma-
lous behavior to an evaluation tree associated with the second
application.

In some instances, the rule generation module 133 uses the
anomalous behavior of the second application detected by the
event engine module 1274 and revises the set of indications
(rules) of allowed behavior associated with the first applica-
tion and/or the set of indications (rules) of allowed behavior
associated with the second application. The revised set of
indications can replace the set of indications in rules database
136a.

In some instances the second application can be, for
example, a web browser application and the indication asso-
ciated with the anomalous behavior can include a uniform
resource locator (URL) trace associated with the web browser
application. The source trace enables the rule generation
module 133 to revise the set of indications (rules) of allowed
behavior associated with the first and/or second application
such that access of second application to the sources that
caused anomalous behavior can be controlled.

In some instances, the set of indications of allowed behav-
ior associated with the first application is based at least in part
on a trust level associated with the first application. The trust
level can be defined by the trust classification module 137
based on, for example, user input, previous behavior of the
first application (e.g., history of actual behavior in data store
135), first application type, previous behavior of the second
application (e.g., history of actual behavior in data store 135),
second application type, etc. Furthermore, the set of indica-
tions of allowed behavior associated with the first application
can includes an identifier of a trusted process associated with
the first application.

It is intended that the systems and methods described
herein can be performed by software (executed on hardware),
hardware, or a combination thereof. Hardware modules may
include, for example, a general-purpose processor, a field
programmable gate array (FPGA), and/or an application spe-
cific integrated circuit (ASIC). Software modules (executed
on hardware) can be expressed in a variety of software lan-
guages (e.g., computer code), including C, C++, Java™,
Ruby, Visual Basic™, and other object-oriented, procedural,
or other programming language and development tools.
Examples of computer code include, but are not limited to,
micro-code or micro-instructions, machine instructions, such
as produced by a compiler, code used to produce a web
service, and files containing higher-level instructions that are
executed by a computer using an interpreter. Additional

US 9,081,959 B2

21

examples of computer code include, but are not limited to,
control signals, encrypted code, and compressed code.

Some embodiments described herein relate to a computer
storage product with a non-transitory computer-readable
medium (also can be referred to as a non-transitory processor-
readable medium) having instructions or computer code
thereon for performing various computer-implemented
operations. The computer-readable medium (or processor-
readable medium) is non-transitory in the sense that it does
not include transitory propagating signals per se (e.g., a
propagating electromagnetic wave carrying information on a
transmission medium such as space or a cable). The media
and computer code (also can be referred to as code) may be
those designed and constructed for the specific purpose or
purposes. Examples of non-transitory computer-readable
media include, but are not limited to: magnetic storage media
such as hard disks, floppy disks, and magnetic tape; optical
storage media such as Compact Disc/Digital Video Discs
(CD/DVDs), Compact Disc-Read Only Memories (CD-
ROMs), and holographic devices; magneto-optical storage
media such as optical disks; carrier wave signal processing
modules; and hardware devices that are specially configured
to store and execute program code, such as Application-Spe-
cific Integrated Circuits (ASICs), Programmable Logic
Devices (PLDs), Read-Only Memory (ROM) and Random-
Access Memory (RAM) devices.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Where methods and steps
described above indicate certain events occurring in certain
order, the ordering of certain steps may be modified. Addi-
tionally, certain of the steps may be performed concurrently
in a parallel process when possible, as well as performed
sequentially as described above. Although various embodi-
ments have been described as having particular features and/
or combinations of components, other embodiments are pos-
sible having any combination or sub-combination of any
features and/or components from any of the embodiments
described herein.

What is claimed is:

1. A non-transitory processor-readable medium storing
code representing instructions to be executed by a processor,
the code comprising code to cause the processor to:

receive a set of indications of predetermined allowed

behavior specific to an application;

initiate an instance of the application within a sandbox

environment;

receive, from a monitor module associated with the sand-

box environment, a set of indications of actual behavior
of'the instance of the application in response to initiating
the instance of the application within the sandbox envi-
ronment;

define an indication associated with an anomalous behav-

ior in response to at least one indication from the set of
indications of actual behavior not corresponding to an
indication from the set of indications of predetermined
allowed behavior, the indication associated with the
anomalous behavior includes a trace associated with a
source of the anomalous behavior;

define, based on the set of indications of actual behavior

and the indication associated with the anomalous behav-
ior, an evaluation tree to include (1) a node associated
with the instance of the application and (2) a node asso-
ciated with the source of the anomalous behavior as a
child of the node associated with the instance of the
application; and

send a report based on the evaluation tree.

35

40

45

50

55

60

65

22

2. The non-transitory processor-readable medium of claim
1, wherein the code to cause the processor to send includes
code to cause the processor to send the report such that the
sandbox environment is terminated.

3. The non-transitory processor-readable medium of claim

1, further comprising code to cause the processor to: store the
evaluation tree as associated with the application.

4. The non-transitory processor-readable medium of claim

1, wherein the monitor module is configured to monitor at
least one of process events of the instance of the application,
file events of the instance of the application, registry events of
the instance of the application, network events of the instance
of'the application or thread injection events of the instance of
the application.

5. The non-transitory processor-readable medium of claim

1, further comprising code to cause the processor to:

revise the set of indications of predetermined allowed
behavior specific to the application in response to the
anomalous behavior.

6. The non-transitory processor-readable medium of claim

1, wherein the set of indications of predetermined allowed
behavior specific to the application is based at least in part on
a trust level associated with the application.

7. The non-transitory processor-readable medium of claim

1, wherein the set of indications of predetermined allowed
behavior specific to the application includes an identifier of a
trusted process associated with the application.

8. The non-transitory processor-readable medium of claim

1, wherein the monitor module is configured to collect at least
one of a trace of network activity of the instance of the
application or an executable file of the instance of the appli-
cation.

9. The non-transitory processor-readable medium of claim

1, wherein the application is from a plurality of independent
applications executable within the sandbox environment.

10. The non-transitory processor-readable medium of

claim 1, wherein the code to cause the processor to define the
evaluation tree includes code to cause the processor to:
associate the indication associated with the anomalous
behavior with the node associated with the instance of
the application as an attribute of the node associated with
the instance of the application.

11. The non-transitory processor-readable medium of

claim 1, further comprising code to cause the processor to:
denote, in the evaluation tree and based on the indication
associated with the anomalous behavior, that the at least
one indication from the set of indications of actual
behavior does not correspond to an indication from the

set of indications of predetermined allowed behavior.

12. An apparatus, comprising:

a control module implemented in at least one of a memory
or a processing device, the control module configured to
initiate an instance of a first application and an instance
of a second application within a sandbox environment,

the control module configured to receive, from a monitor
module associated with the sandbox environment, a set
of indications of actual behavior of the instance of the
first application and a set of indications of actual behav-
ior of the instance of the second application, an indica-
tion of a behavior being within both the set of indications
of actual behavior of the instance of the first application
and the set of indications of actual behavior of the
instance of the second application,

the control module configured to classify the behavior as an
anomalous behavior for the first application based on the
indication of the behavior not being within a predeter-
mined allowed behavior set for the first application, the

US 9,081,959 B2

23

control module configured to not classify the behavior as
an anomalous behavior for the second application based
on the indication of the behavior being within a prede-
termined allowed behavior set for the second applica-
tion,

the control module configured to send a signal in response
to classifying the behavior as an anomalous behavior for
the first application such that the sandbox environment is
terminated; and

an event engine module operatively coupled to the control
module and implemented in at least one of the memory
or the processing device, the event engine module con-
figured to add a representation of the behavior to an
evaluation tree including (1) node associated with the
instance of the first application and (2) a node associated
with a source of the anomalous behavior as a child of the
node associated with the instance of the first application.

13. The apparatus of claim 12, further comprising the sand-
box environment.

14. The apparatus of claim 12, wherein the control module
is operatively coupled to the sandbox environment via a net-
work.

15. The apparatus of claim 12, wherein the set of indica-
tions of actual behavior of the instance of the first application
includes at least one of a process event identifier of the
instance of the first application, a file event identifier of the
instance of the first application, a registry event identifier of
the instance of the first application or a network event iden-
tifier of the instance of the first application.

16. The apparatus of claim 12, wherein the first application
and the second application are from a plurality of independent
applications executable within the sandbox environment.

17. The apparatus of claim 12, wherein the predetermined
allowed behavior set for the first application is specific to the
first application.

18. An apparatus, comprising:

a control module implemented in at least one of a memory
or a processing device, the control module configured to
receive a set of indications of allowed behavior associ-
ated with a first application, the control module config-
ured to initiate an instance of the first application within
a sandbox environment such that the instance of the first
application initiates an instance of a second application
within the sandbox environment, the first application
and the second application are from a plurality of inde-
pendent applications executable within the sandbox
environment,

the control module configured to receive, from a monitor
module associated with the sandbox environment, a set
of indications of actual behavior of the instance of the

20

25

30

35

40

45

24

second application in response to the instance of the first
application initiating the instance of the second applica-
tion,

the control module configured to send an indication asso-

ciated with ananomalous behavior in response to at least
one indication from the set of indications of actual
behavior of the instance of the second application not
corresponding to an indication from the set of indica-
tions of allowed behavior associated with the first appli-
cation;

an event engine module operatively coupled to the control

module and implemented in at least one of the memory
or the processing device, the event engine module con-
figured to add a representation of the anomalous behav-
ior to an evaluation tree as an attribute of a node (1)
associated with the second application and (2) defined in
the evaluation tree as a child of a node associated with
the first application; and

arule generation module implemented in at least one of the

memory or the processing device, the rule generation
module configured to generate a revised set of indica-
tions of allowed behavior associated with the first appli-
cation based on the evaluation tree.

19. The apparatus of claim 18, further comprising the sand-
box environment.

20. The apparatus of claim 18, wherein the control module
is operatively coupled to the sandbox environment via a net-
work.

21. The apparatus of claim 18, wherein the control module
is configured to send the indication associated with the
anomalous behavior such that the sandbox environment is
terminated.

22. The apparatus of claim 18, wherein the control module
is configured to revise the set of indications of allowed behav-
ior associated with the first application in response to the
anomalous behavior.

23. The apparatus of claim 18, wherein the second appli-
cation is a web browser application, the indication associated
with the anomalous behavior includes a uniform resource
locator (URL) trace associated with the web browser appli-
cation.

24. The apparatus of claim 1, wherein the set of indications
of allowed behavior associated with the first application is
based at least in part on a trust level associated with the first
application.

25. The apparatus of claim 18, wherein the set of indica-
tions of allowed behavior associated with the first application
is specific to the first application.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,081,959 B2 Page 1 of 1
APPLICATION NO. : 13/690452

DATED :July 14, 2015

INVENTORC(S) : Anup Ghosh et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims
Claim 12, line 32 (column 23, line 14):

“evaluation tree including (1) node associated with the” should be --evaluation tree including
(1) a node associated with the--,

Claim 24, line 1 (column 24, line 42):

“The apparatus of claim 1,” should be --The apparatus of claim 18--.

Signed and Sealed this
First Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

